
Robust Online Portfolio Optimisation

Lukas Jarasunas * Hrithik Nambiar *

Abstract
Portfolio optimization is a well-studied optimisa-
tion problem in both machine learning and com-
putational finance. The task is to optimally al-
locate wealth across various assets such that the
returns are maximized. In a world where market
prices are dynamic and can often be considered
adversarial, the assumptions of statistical machine
learning fail. Online learning provides a frame-
work for studying such optimization problems. In
this work, we compare and contrast different state-
of-the-art online learning algorithms using a real-
world dataset of different exchange-traded funds.
We observe the superior performance of certain
classes of algorithms over others during certain
market trends. To take advantage of this discrep-
ancy in the performance of different base experts,
we propose meta-learning as a solution to com-
bine these base experts. In this work, we present
different Nth-degree meta-learners and a particle-
swarm-based meta-learner to assign the optimal
weights to the decisions of experts. We present
both a regret and run-time analysis for these meth-
ods. Experimental results on real-world stocks
are also presented.

1. Introduction
1.1. Background and Motivation

Portfolio optimization seeks to determine how to allocate
wealth to a set of assets to maximize returns and minimize
risk. Traditional approaches rely on assumptions of sta-
tionary market conditions or known return distributions.
However, in real-world financial markets, these assumptions
often break down due to the adversarial and dynamic nature
of assets’ price movements. This necessitates a more robust
approach to allocating wealth.

Online learning offers a robust, natural framework for tack-
ling adversarial and dynamic problems. Online learning
algorithms make decisions on already observed data to min-
imize regret compared to the best possible strategy in hind-
sight. This sequential decision-making framework has been
adopted for portfolio optimization with great success: rather

than requiring and optimizing over the entire data set up
front, we can make more robust strategies without using
future data or any assumptions on the distribution of returns.
Online learning has created powerful portfolio optimiza-
tion strategies that tend to be more adaptable or robust than
traditional strategies.

However, the numerous online portfolio optimization strate-
gies [OLPSs] perform significantly differently under differ-
ent market conditions. For example, Follow The Winner
[FTW] strategies, where wealth is allocated to assets that
have historically performed the best, tend to perform better
in trending markets, while Follow The Loser [FTL] strate-
gies, where wealth is allocated according to an asset’s price
difference from its mean, tend to perform better in side-
ways moving markets. An optimal strategy would be robust
yet highly profitable, no matter what the general market
conditions are.

Meta-learning algorithms involve combining the decisions
of experts to assign weights to predictions. In portfolio
optimization, meta-learners may assign weights to portfo-
lio optimization strategies such that the overall strategy is
robust yet highly profitable no matter the general market
conditions. Further, a meta-learner of OLPSs is online,
keeping the robust and adaptable characteristics of online
algorithms.

1.2. Major Contributions

In this work, we present two novel meta-learning algorithms,
namely the Nth-degree meta-learners and Particle Swarm
Meta-Optimizer. Our algorithms intelligently, adaptively
assign weights to online portfolio strategies, essentially as-
signing weights to assets. We show that this creates more
robust portfolios with a sub-linear regret guarantee. We also
show the runtime complexity of these algorithms, propose
hypotheses, and rigorously test these hypotheses using a
train test split.

1.3. Paper Organization

In Section 2, we present an extensive literature review of
OLPSs. Section 3 outlines the experimental setup for testing
our proposed algorithms. Section 4 presents our algorithms
with their definition, motivation, online nature, runtime,
hypothesis, results, and analysis. Section 5 finally concludes

1

the paper and outlines future potential directions of research.

1.4. Goal

Through this paper, we aim to bridge the gap between the-
oretical advances in OLPSs and their practical application
in robust portfolio optimisation by providing scalable and
adaptable frameworks for financial markets in the real world.

2. Related Works
We present an extensive literature review on the state-of-the-
art algorithms for online portfolio optimization.

2.1. Online Learning

To introduce the concept of online learning, consider a game
played over T rounds. In each round t, an adversary secretly
chooses a real number Yt ∈ [0, 1]. You then guess a number
Xt ∈ [0, 1]. After your guess, the adversary reveals Yt, and
you incur the loss ℓt = (Xt − Yt)

2. How can we minimize
the cumulative loss over all rounds? Even though Yt is
chosen adversarially and revealed only after Xt is guessed,
we can sequentially provide better predictions by adapting
to feedback.

We may solve problems like these through regret minimiza-
tion, which is detailed in the next section. (Wald & Wol-
fowitz, 1950) first introduced the concept of maximizing
utility in statistical decision problems based on zero-sum
two-person games. (Savage, 1951) then reframed this prob-
lem as minimizing loss. (J.Milnor, 1951) then recharacter-
ized this loss as regret. (Hannan, 1957) focused on mini-
mizing regret in zero-sum repeated games. These papers
all built the foundation for online learning, a field that has
since been developed and applied to a variety of domains.

2.2. Regret

In statistical machine learning, where the assumption is that
the data is sampled from a distribution, the goal is often
loss or empirical risk minimization. However, in the case of
online learning, where there is no assumption regarding the
dataset distribution, the goal is often to minimize the regret
against any competitor u. For the game of guessing real
numbers in [0, 1], Regret is defined against any competitor
u ∈ [0, 1] as,

RT (u) :=

T∑
t=1

ℓt (xt)−
T∑

t=1

ℓt(u)

In other words, the regret compares the cumulative loss
of the player to the cumulative loss of the best action in
hindsight. Online learning algorithms aim to have a sub-
linear regret. In previous works, this is usually done by
making assumptions of strong convexity and smoothness

on the loss functions. Having a sub-linear regret guarantees
that its performance on average will approach the fixed best
strategies as the number of rounds increases.

Consider the game mentioned above. If one assumes that
the numbers are from a fixed distribution, they can guess the
mean µ in each round and incur a loss of σ2T in T rounds
on average. In such a game, the goal of our online algorithm
would be to minimize the regret,

EY

[
T∑

t=1

(xt − Y)
2

]
− σ2T,

2.3. Standard Portfolio Optimisation Methods

Before touching OLPSs, we must first be accustomed to
the standard approach of portfolio optimization. Tradi-
tional methods focus on allocating wealth across assets to
maximize wealth or similar performance measures. Now
we introduce the notations used in this work. We as-
sume that we are allocating wealth across d ≥ 2 as-
sets. Further, let the market gains vector at time t be
wt = (wt,1, wt,2, . . . , wt,d), where wt,i denotes the gain
of asset i in the time period t. A portfolio strategy can be
defined as xt = (xt,1, xt,2, . . . , xt,d), where xt,i represents
the proportion of wealth invested in asset i at time t. The
strategy must satisfy 0 ≤ xt,i ≤ 1 and ∥xt∥1 = 1, ensuring
that all wealth is constantly invested. Note that one may
include the U.S. dollar (or whichever native currency) as
an asset, allowing the portfolio strategy to not have all of
its wealth invested at all periods. Over T time periods, the
objective function is typically maximizing the logarithm of
wealth log(WT) = log(

∏T
t=1 wt ·xt) =

∑T
t=1 log(wt ·xt)

or the Sharpe ratio E[WT (x)−r]
STD[WT (x)] , where r is the risk-free re-

turn.

As an example, the most naive portfolio strategy is buy and
hold, where one allocates an initial portfolio and doesn’t
change it overall T. Another class of strategies is the constant
rebalanced portfolio, where one maintains fixed portions of
wealth in each asset by rebalancing their portfolio after each
timestamp t ∈ [0, T].

Typically, more complex portfolio strategies will divide
available data into train, validation, and test sets. They
will then build a model using the training dataset, tune
hyperparameters using the validation dataset, and find the
profitability using the test dataset. Online portfolio opti-
mization strategies make certain restrictions that can create
more robust strategies.

(Kelly, 1956) first proposed maximizing log(W). He as-
sumed market gains are i.i.d. from a known distribution to
create a distributional approach to betting and gambling.

2

2.4. Online Portfolio Optimisation

Unlike standard approaches, an online portfolio optimisa-
tion strategy can only utilize information available up to
time t− 1. Say one has data from 2020 until now of certain
assets. This means that they should design a strategy such
that if run on Jan 1st, 2021, it could only use data from the
year 2020. This is fundamentally different from standard
methods which tend to use all data points within a train data
set. Additionally, no assumptions can be made about the
distribution of market returns; this further reinforces the
robustness of these methods.

The primary objective of these OLPSs is to minimize the
regret in wealth of one’s strategy against the best con-
stant rebalanced portfolio [BCRP]—namely, the constant
reblanced portfolio with the highest wealth return from the
entire set of constant rebalanced portfolios in hindsight:
RT (x) = ln(WT (u)) − ln(WT (x)), where u is the best
constant rebalanced portfolio. There are several reasons
that constantly rebalanced portfolios are the set of com-
parators. Firstly, consider a market with market vectors
of (1, 1/2), (1, 2), (1, 1/2), (1, 2), The BCRP here is
(0.5, 0.5) which is able to extract WT (u) = (9/8)T/2, de-
spite the market effectively moving sideways. Also, if the
market vectors are i.i.d., the BCRP is asymptotically optimal
in hindsight.

Further, the goal of online strategies is to achieve sublinear
regret. As a tangible example, exponential gradient [EG], an
online strategy covered next, has its wealth graphed against
BCRP over an arbitrary set of assets in Figure 1. BCRP
outperforms EG in wealth at least. Further, EG’s regret over
that same period is plotted in Figure 2. Regret is a very
theoretical quantity, and current literature mainly proves
that the upper bound of a strategy’s regret is sublinear. As
shown in the plot, these bounds are often quite loose in
practice.

2.5. Benchmarks/Algorithms

This section will cover a variety of popular portfolio op-
timization algorithms. We classify these benchmark algo-
rithms into three main classes based on the strategy they fol-
low: Follow-The-Winner [FTW], Follow-The-Loser [FTL],
and Meta-Learning Algorithms.

(Cover & Ordentlich, 1996) proposed the first portfolio
optimization algorithm which would be considered online.
It contained minimax regret and no assumptions over market
gains. Future papers focused on specific OLPSs and proving
sublinear regret or similar properties of these algorithms.

2.5.1. FOLLOW THE WINNER

FTW strategies tend to allocate wealth to assets that have
performed well in the past. Looking at online strategies, the

Figure 1. Comparison of wealth generated using EG to BCRP. An
example showing BCRP makes a great comparator for regret.

simplest method is the Follow-the-Leader [FTL1] strategy,
which selects the portfolio at time t to maximize cumu-
lative past log-wealth: xt = argmaxx

∑t−1
i=1 ln(Wi(x)).

FTL1 can lead to unstable allocations even though it is
conceptually straightforward. Follow-The-Regularized-
Leader [FTRL] aims to solve this by adding a regular-
ization term r(x) to encourage diversification: xt =

argmaxx

[
r(x) + ηt

∑t−1
i=1 ln(Wi(x))

]
, where ηt is a

learning rate to control the balance between regularization
and historical performance. A specific example of FTRL is
the Exponential Gradient Algorithm [EG](Helmbold et al.,
1998) which uses Shannon’s entropy as the regularization
term: r(xt) = −

∑d
j=1 xt,j ln(xt,j). Shannon’s entropy

is highest with an equal allocation of wealth between as-
sets, making a perfect regularization term. Similar strate-
gies allocate wealth to the best-performing assets, making
FTW strategies best in trending markets where the best-
performing assets stay as the best-performing assets.

2.5.2. FOLLOW-THE-LOSER

Unlike FTW strategies, FTL strategies transfer wealth from
the winners to the losers. The main idea behind this strategy
is that of mean reversion (Poterba & Summers, 1988), which
suggests that the good stocks which are poorly performing
at a certain period would perform well in the following peri-
ods. Hence, this strategy suggests to transfer wealth to the
”losers”. (Borodin et al., 2003) proposed an algorithm called
Anticor, which calculates the correlations of assets across a
time window, and finds the anti-correlated assets for trans-
ferring wealth to grab the advantage of the potential mean
reversal behaviour of the market. (Li et al., 2012) presents a
Passive-Aggressive-Mean-Reversion [PAMR] algorithm to
adjust portfolio weights iteratively while minimizing a hinge

3

Figure 2. Comparison of the computed regret of EG against the
theoretical upper bound.

loss which ensures a minimal deviation from the current
portfolio while also adhering to the mean-reversal princi-
ple. (Li et al., 2013) proposed Confidence-Weighted-Mean-
Reversal [CWMR] which modeled the portfolio vector as
a Gaussian, which helps incorporate an uncertainty signal
in the mean reversion signal. This helps performance by
allowing for cautious updates during volatile periods and
aggressive updates in stable markets. Online Moving Av-
erage Reversion [OLMAR] (Li & Hoi, 2012) maintained
a moving average of the relative prices of assets, to model
multi-period mean reversion, unlike PAMR and CWMR
which implicitly predicts prices at t + 1 as that of t − 1.
Robust Median Reversion [RMR] (Huang et al., 2016) pre-
sented a more robust algorithm to exploit mean reversion
via a robust L1-median estimator. Similar strategies allocate
wealth to the worst performing assets, making FTL strate-
gies best in sideways moving markets where assets fluctuate
around their means.

2.5.3. ONLINE META-LEARNING

Meta-learning in the context of online learning is also re-
ferred to as expert learning. The idea in this learning
paradigm is to learn to assign weights to the decisions of a
pool of base expert algorithms. These weights are updated in
an online fashion to accommodate the dynamic nature of the
problem at hand. The advantages of meta-algorithms are at-
tributed to the fact that one does not know which algorithm is
the optimal expert before the decision is made (Das & Baner-
jee, 2011). When both heuristics and universal strategies are
present in the pool of base experts, the meta-learning algo-
rithm conserves the universality property. (Vovk & Watkins,
1998) developed an Aggregating Algorithm which sug-

gested iteratively updating Pt the weights assigned to each
base expert at time t as Pt+1(A) =

∫
A
βℓ(xt,γt(θ))Pt(dθ),

where βℓ(xt,γt(θ)) represents the loss incurred by assigning
weight Pt at the previous time step. The most influential
work in the area was (Das & Banerjee, 2011), which pro-
posed two meta-learning algorithms, namely, Online Gra-
dient Update (OGU) and Online Newton Update (ONU).
OGU updates the weights Pt assigned to each of the k
base expert as Pt+1(h) = Pt(h) exp (−ηℓt(h)) /Zt where
η > 0 and Zt is the partition function. Similarly, ONU
updates the weights as, wt+1,h =

∏At

∆k

(
wt − 2

βA
−1
t ∇ft

)
.

Here, At is defined as At =
∑t

τ=1 ∇ft∇fT
t + ϵI. The-

oretically, OGU and ONU can achieve the growth rate as
the optimal convex combination of the underlying experts.
Most recently, (Zhang et al., 2024) has proposed combing
the OGU and ONU meta-learning algorithms with a peak
price prediction model.

3. Experimental Setup
3.1. Dataset

Our proposed algorithms will be tested on the
longest-running ETFs across six distinct asset classes:
VTI, EFA, EEM, TLT, TIP, and VNQ. These ETFs ensure
board market representation and diversification while also
avoiding survivor-ship bias. The daily closing prices of
these ETFs from 2010-2024 are easily accessible through
Yahoo Finance.

Further, the returns of OLPSs are part of the dataset, as
our proposed meta-learners will be based on these re-
turns. We use several types of base strategies: Follow-The-
Winner (Universal Portfolio [UP], EG, ONS), Follow-The-
Loser (PAMR, OLMAR, RMR, CWMR), and correlation-
based (Correlation-driven nonparametric learning approach
[CORN]). To verify the claim that certain portfolio strate-
gies perform worse than others in given periods, each OLPS
has been the worst-performing strategy in at least one month
of the available dataset in figure 3.

3.2. Testing Framework

Even though our proposed algorithms are online, we need
a testing framework. Namely, we need a train set for hy-
perparameter selection and a test set to estimate actual re-
turns. The strategies will be trained on closing prices from
2010–2019. Hyperparameters will be chosen according to
performance in this time period. Finally, strategies with
optimal hyperparameters will be tested on data from 2020
to the present, ensuring the methods generalize to unseen
market conditions. Although our algorithms are online in
nature, we use this test dataset to test the robustness of our
algorithms without any intervention.

4

Figure 3. This figure shows that each OLPS performs the worst in atleast one month. This motivates us to develop meta-learning
algorithms.

4. Proposed Algorithms
Given this background, we may propose and test novel
meta-learning online portfolio optimisation algorithms and
provide theoretical guarantees for them.

4.1. Nth-Degree Meta-Learners

Firstly, define a 0th-degree strategy as directly choosing the
weights of the assets. In this context, these strategies are
UP, EG, ONS, etc. For example, a 0th-degree UP strategy is
simply UP. Then, a 1st-degree strategy is a meta-learner that
selects the weights of multiple 0th-degree strategies. For
example, a 1st degree EG strategy would apply EG to the UP,
EG, ONS, etc ... strategies. Similarly, a 2nd-degree strategy
allocates weights to 1st-degree strategies. For example, a
2nd-degree EG strategy would apply EG to the 1st-degree
UP, 1st-degree EG, 1st-degree ONS, etc... strategies. This
hierarchy extends to an Nth-degree strategy, which chooses
weights for N − 1th-degree strategies. The intuition is that
meta-learners [of the first degree] generally perform better
than individual assets. We will analyze exactly how these
strategies scale at increasing degrees of meta-learning.

4.1.1. SUBLINEAR REGRET

First, though, we prove that these strategies have sub-linear
regret:

Proof. Let S be a set of OLPSs, where RT (s) <
O(T) ∀s ∈ S [i.e. sublinear regret], |S| = n. Finally,
denote S

(d)
i as the dth-degree strategy of Si.

We want to show that RT (s
(d)
i) < O(T)∀i ∈ [1, N], d ∈

Z+, or that every OLPS strategy has a sublinear regret at
every possible degree.

We may use induction:
Base case (d = 0):
RT (s

(0)
i) = RT (si) < O(T) by definition.

Inductive case:
Assume RT (s

(d)
i) < O(T).

Let wi denote the weight assigned to each d-1 degree strat-
egy by s

(d)
i , where

∑N
i=1 wi = 1.Then,

RT (s
(d+1)
i) = ln(WT (c))− ln(WT (s

(d+1)
i))

= ln(
∑n

i=1 wiWT (c))− ln(
∑N

i=1 wiWT (s
(d)
i))

=
∑n

i=1 ln(wiWT (c))− ln(wiWT (s
(d)
i))

=
∑n

i=1 ln(WT (c))− ln(WT (s
(d)
i)) + ln(wi)− ln(wi)

<
∑n

i=1 O(T) = nO(T) = O(T)

∴ RT (s
(d+1)
i) < O(T)

So, nth-degree strategies are online and have sublinear re-
gret.

4.1.2. RUNTIME

Let’s further understand the runtime of Nth-degree strate-
gies. Let O(w) = max({O(si)∀i ∈ [1,m]}) or the
worst runtime of a 0th degree strategy. Clearly, it takes
O(n ∗ w) time to compute all 0th-degree strategies. Given
that the 0th-degree strategies are precomputed, it will take
another O(n ∗ w) time to compute all 1st-degree strategies
or O(n ∗w) +O(n ∗w) = 2O(n ∗w) time in total to com-
pute the all 1st-degree strategies. Following this pattern of
pre-computation, it will take d ∗O(n ∗ w) time to compute
all d − 1 degree strategies. Given this precomputation, it
will take O(w) time to compute the dth-degree strategy or
d ∗ O(n ∗ w) + O(w) = O(n ∗ w ∗ d) time to compute a
dth-degree strategy. Using dynamic programming, we can
make the runtime of a dth-degree strategy linear in terms

5

of d. This circumvents the recursive nature of a dth-degree
strategy, which when implemented poorly could create a
very inefficient algorithm.

4.1.3. HYPOTHESIS

We hypothesize that high-degree OLPSs are able to outper-
form their base strategy and likely their 1st-degree strategy
[common definition of meta-learners]. The optimal degree
will depend on the assets traded, base strategies, and time
period. This degree may be determined by the performance
of various degrees of the same base strategy on the train set
and can be tested on the test set. The exact degree is likely
difficult to estimate and better saved for computational re-
sults on the train and test sets.

4.1.4. TRAIN RESULTS

Now we are able to train these strategies from 2010-2020.
Figure 4 displays the wealth of a given strategy at varying
degrees.

Firstly, we see that FTW strategies accumulate more wealth
at higher degrees, while FTL and correlation strategies ac-
cumulate the most wealth around the 1st or 2nd degree. We
can analyze the Sharpe ratios and volatility [standard devi-
ation of returns] to make sure that we are getting the full
picture.

Table 1. Sharpe Ratio on Train Set
Degree UP EG PAMR OLMAR RMR CORN ONS

Degree 0 0.626187 0.623242 1.006900 0.834050 0.793279 0.928044 0.497848
Degree 1 0.940998 0.938118 0.845562 1.058154 0.998033 0.777952 0.737514
Degree 2 0.985156 0.984917 0.759415 0.927993 0.930661 0.856015 0.938137
Degree 3 0.946288 0.946797 0.912035 0.838745 0.864952 0.875373 0.954222
Degree 4 0.921406 0.921790 0.945669 0.953328 0.950013 0.813847 0.942634

Table 2. Volatility of Train Set
Degree UP EG PAMR OLMAR RMR CORN ONS

Degree 0 0.115754 0.115837 0.187018 0.193949 0.194657 0.173505 0.143930
Degree 1 0.135353 0.134898 0.173591 0.176660 0.177851 0.175709 0.121770
Degree 2 0.144311 0.143981 0.162422 0.164771 0.166155 0.172341 0.136122
Degree 3 0.149439 0.149392 0.161294 0.161413 0.160829 0.161717 0.147167
Degree 4 0.152908 0.152864 0.156684 0.157316 0.157995 0.157208 0.151525

Here, FTW strategies have the highest Sharpe ratio around
degree 2 and FTL strategies have the highest Sharpe ratio
around degree 1. Further, FTW strategies have increasing
volatility [most of which is likely ’upwards volatility’] for
higher degrees, while the FTL strategies have decreasing
volatility at higher degrees. Overall, these results imply that
2nd-degree strategies are likely optimal for FTW strategies
and 1st-degree strategies are optimal for FTL strategies.

4.2. Test Results

Now, we may test these strategies to make sure that our
results hold from 2020-2024, data which hasn’t been used
at all so far. The same graphs and tables on the test set are

provided in Figure 5.

These results do match our hypothesis from the train results.
Namely, we can achieve higher wealth than the base strat-
egy using 2nd-degree FTW strategies and 1st-degree FTL
strategies.

4.2.1. ANALYSIS

Overall Nth-degree strategies can combine returns from
lower-degree strategies to give higher returns. Nth-degree
strategies have been shown to perform better with FTW
than FTL strategies. Our initial intuition for this is that it
makes more sense to use FTL strategies on assets more than
on strategies—there’s a higher probability that a strategy
that’s underperforming is a ’bad’ strategy than an asset
that’s underperforming is a ’bad’ asset, especially when the
assets tested have been hand chosen to be ’good’ assets.
Therefore, it would make sense for FTW strategies to be
better meta-learners than FTL strategies—there are plenty of
strategies which are very bad but only a handful that a good.
Regardless, the nth-degree strategies can take advantage of
each other, and it makes intuitive sense that the best degree
of a FTW strategy is one degree larger than a FTL strategy
[i.e. the FTW strategy can take perfect advantage of the
best FTL strategy before that strategy diminishes]. Further,
at high degrees, Nth-degree meta-learners seem to simply
average out the returns of all base strategies. Intuitively this
makes sense as meta-learning is a sort of averaging.

Overall, the initial results of Nth-degree meta-learners are
very promising. At certain degrees, they are reliably, by the
train test split setup, able to provide higher returns with a
higher Sharpe ratio. The optimal degree is very dependent
on the data and base strategy. Although clear patterns seem
to emerge which are dependent on the class of portfolio
optimization strategy.

4.3. Particle-Swarm-Optimizer Meta-Learner

Particle Swarm Optimization (Kennedy & Eberhart, 2002)
is a meta-heuristic stochastic optimization algorithm which
is biologically inspired by the movement of a flock of birds
or a school of fishes. It involves initializing particles, ran-
domly across the search space and iteratively improving
their positions based on the value of the ”fitness function”
that is optimized. Individually the particles contain no in-
telligence but by interacting with other particles they can
explore the search space efficiently.

Every particle is a solution to the optimization problem. In
our work, the position of each particle represents a weight
vector w = [w1, w2, ..., wk], which is the weight assigned
to the decisions of k base algorithms or experts. In this
formulation,

∑
wi = 1 and 0 ≤ wi ≤ 1. In essence, each

particle is its meta-learner. Each particle has an associated

6

Figure 4. This figure shows the wealth generated by different Nth-degree Meta-Learners from 2010-2020.

velocity component. The basic idea lies in accelerating each
particle towards its personal best position (i.e. solution)
achieved so far and also towards the best solution attained
so far by any particle in the swarm. The update equations
for the swarm are given as,

vt+1 = m ∗ vt + c1 ∗ r1 ∗ (P t
best − xt)+

c2 ∗ r2 ∗ (Gt
best − xt)

(1)

wt+1 = wt + vt+1 (2)

where c1 = 1 and c2 = 2 are constants called the cognitive
and social factors of the swarm respectively. r1, r2 are
random numbers from Unif(0, 1). P t

best and Gt
best is the

best position of individual particles and the swarm as a
whole until time t.The goal of the swarm is to optimize the
fitness function. In our implementation, the fitness function
was the logarithm of wealth until time t. The particles
explore the search space to maximize this fitness function. A
good property of PSO is that the particles have an associated
momentum component controlled by a hyper-parameter m,
which aids in exploring the search space and not getting
stuck in local optima.

4.3.1. HYPOTHESIS

We hypothesize that the momentum of the particles will help
the swarm to discover and adapt to better solutions in the
dynamic market where we do not know which base expert
performs better (Fig 3). We hypothesize that combining the
decisions of multiple base experts would help in generating
higher wealth in some periods in a dynamic market with
minimal compromise in run-time. This idea is tangential to
boosting algorithms in machine learning, which is also an
ensemble meta-heuristic for increasing robustness.

4.3.2. ONLINE PSO

We train the PSO on data until 2010 until convergence to
find the optimal weights for each base expert (or strategy),
similar to 6. This strategy weight is updated using PSO
every 30 days by running just a few iterations on the data
collected in the elapsed 30 days. This strategy weight is then
utilised to generate wealth during the next 30 days. This
is different from just following the best base expert since
we observe that PSO can weigh and utilise the decisions of
multiple base experts to generate higher wealth than any of
the individual base experts in this period.

4.3.3. RESULTS

Firstly, we run our PSO algorithm on the benchmark al-
gorithms using data from 2010-2020. We notice that PSO
outperforms all base experts by using a weighted combi-
nation of PAMR and CORN algorithms (Fig 6). This is
consistent with our training results in section 4.1.4, which
shows that PAMR and CORN generates the highest wealth
in 2010-2020. But PSO leverages the best of both these
algorithms to outperform them.

We implemented an online version of the PSO algorithm.
We run the PSO algorithm every 30 days to find the optimal
weights to be assigned to the base experts. This weight is
then used for the next 30 days.

We observe similar gains in wealth (4x) in the period 2020-
2024 which we refer to as the ”test dataset” in this paper.

4.3.4. ANALYSIS

We see that during certain periods the PSO algorithm can
give equally high weights to multiple algorithms thereby

7

Figure 5. This figure shows the wealth generated by different Nth-degree Meta-Learners from 2020-2024, which we refer to as the testing
period.

Figure 6. PSO converges to weighing strategy that gives a very
high weight to PAMR and small weight to CORN, when trained
on data from 2010-2020. This strategy of weighing PAMR and
CORN generates higher wealth than all base experts.

outperforming these algorithms in that period. This is in
line with our hypothesis.

However, when used in the fashion suggested in the previous
section, we notice that a few base experts outperform the
PSO algorithm in the period 2010-2020 7. Initial analysis
attributes this to the fact that we only run the PSO every 30
days. Therefore, the algorithm is currently unable to exploit
the market dynamics in this period. A way to circumvent
this pitfall is to track the market volatility and adaptively
run PSO to learn the weights for the strategies. We leave
this for future work.

Regardless, this PSO algorithm is a valid meta-learning algo-

Figure 7. Comparison of the wealth generated using the proposed
online PSO meta-learning algorithm against other benchmarks.

rithm in performing significantly better than the worst OLPS
and a portfolio consisting of even weighting of OLPSs. In
this way, choosing this PSO algorithm is better than arbitrar-
ily choosing any OLPS.

5. Conclusion and Future Work
This work presents two promised meta-learning algorithms
for Robust Online-Portfolio Optimization. The Nth-Degree
Meta-Learners have been shown to have sub-linear regret,
time complexity linear in n, and higher returns/Sharpe ratio
for n > 0. Future work includes testing these meta-learners
on different sets of data, including more online portfolio
strategies to choose from, and adding a native currency as a
potential asset at all degrees. Further combining Nth-Degree

8

Meta-Learners such that an Nth-degree strategy could utilize
some subset of all d < N th-degree strategies would also be
very interesting. The particle swarm optimization algorithm
is an extremely efficient algorithm for learning weights for
these online optimization algorithms. We show that combin-
ing the decisions of multiple base experts helps in superior
performance in some periods in a dynamic market with
minimal compromise in run-time. We would like to draw
parallels between our approaches and boosting algorithms in
machine learning, which is also an ensemble meta-heuristic
for increasing robustness. The PSO approach has multiple
ideas that we defer for future work. Firstly, improvements
to the PSO approach which seem very promising include
adaptively running PSO by tracking the market volatility
and also studying the effects of the number of particles and
better ways to re-initialize particles in the search space. We
would also like to study the effect of transaction cost on
our algorithms. In a real-world setting, transferring wealth
between assets attracts a fee which must be included as a
constraint to the optimization problem.

Acknowledgements
We would like to thank Professor Francesco Orabona for his
book (Orabona, 2019), which introduced us to the field of
online learning this semester. We recommend readers refer
to the proofs for sub-linear regret for the benchmark online
learning algorithms used in this work from this book.

References
Borodin, A., El-Yaniv, R., and Gogan, V. Can we learn

to beat the best stock. Advances in Neural Information
Processing Systems, 16, 2003.

Cover, T. M. and Ordentlich, E. Universal portfolios with
side information. IEEE Transactions on Information
Theory, 42(2):348–363, 1996.

Das, P. and Banerjee, A. Meta optimization and its appli-
cation to portfolio selection. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 1163–1171, 2011.

Hannan, J. Approximation to bayes risk in repeated play.
Contributions to the Theory of Games, 3(2):97–139,
1957.

Helmbold, D. P., Schapire, R. E., Singer, Y., and Warmuth,
M. K. On-line portfolio selection using multiplicative
updates. Mathematical Finance, 8(4):325–347, 1998.

Huang, D., Zhou, J., Li, B., Hoi, S. C., and Zhou, S. Robust
median reversion strategy for online portfolio selection.
IEEE Transactions on Knowledge and Data Engineering,
28(9):2480–2493, 2016.

J.Milnor. Games against nature. Technical Report RM-679,
RAND PROJECT AIR FORCE, 1951.

Kelly, J. L. A new interpretation of information rate. the
bell system technical journal, 35(4):917–926, 1956.

Kennedy, J. and Eberhart, R. Particle swarm opti-
mization. Proceedings of ICNN’95 - International
Conference on Neural Networks, 4:1942–1948 vol.4,
2002. URL https://api.semanticscholar.
org/CorpusID:3114196.

Li, B. and Hoi, S. C. On-line portfolio selection with moving
average reversion. arXiv preprint arXiv:1206.4626, 2012.

Li, B., Zhao, P., Hoi, S. C., and Gopalkrishnan, V. Pamr:
Passive aggressive mean reversion strategy for portfolio
selection. Machine learning, 87:221–258, 2012.

Li, B., Hoi, S. C., Zhao, P., and Gopalkrishnan, V. Confi-
dence weighted mean reversion strategy for online portfo-
lio selection. ACM Transactions on Knowledge Discovery
from Data (TKDD), 7(1):1–38, 2013.

Orabona, F. A modern introduction to online learning. arXiv
preprint arXiv:1912.13213, 2019.

Poterba, J. M. and Summers, L. H. Mean reversion in stock
prices: Evidence and implications. Journal of financial
economics, 22(1):27–59, 1988.

Savage, L. J. The theory of statistical decision. Journal
of the American Statistical association, 46(253):55–67,
1951.

Vovk, V. and Watkins, C. Universal portfolio selec-
tion. In Proceedings of the Eleventh Annual Confer-
ence on Computational Learning Theory, COLT’ 98,
pp. 12–23, New York, NY, USA, 1998. Association
for Computing Machinery. ISBN 1581130570. doi:
10.1145/279943.279947. URL https://doi.org/
10.1145/279943.279947.

Wald, A. and Wolfowitz, J. Bayes solutions of sequential
decision problems. The Annals of Mathematical Statistics,
pp. 82–99, 1950.

Zhang, Y., Lin, H., Li, J., and Yang, X. Combined peak price
tracking strategies for online portfolio selection based on
the meta-algorithm. Journal of the Operational Research
Society, 75(10):2032–2051, 2024.

9

https://api.semanticscholar.org/CorpusID:3114196
https://api.semanticscholar.org/CorpusID:3114196
https://doi.org/10.1145/279943.279947
https://doi.org/10.1145/279943.279947

